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Although a brake pad and disc have many modes of vibration, when it is unstable and
hence noisy then frequently only a single mode of the complete system contributes to the
vibration. In this condition, only a few modes are required to model the system. In this
paper, a two-degree-of-freedommodel is adopted where the disc and the pad are modelled as
single modes connected by a sliding friction interface. Using this model, the interaction
between the pad and the disc is investigated. Stability analysis is performed to show under
what parametric conditions the system becomes unstable, assuming that the existence of
a limit cycle represents the noisy state of the disc brake system. The results of this analysis
show that the damping of the disc is as important as that of the pad. Non-linear analysis is
also performed to demonstrate various limit cycles in the phase space. The results show that
the addition of damping to either the disc or the pad alone may make the system more
unstable, and hence noisy.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Automotive brake noise has been investigated by many researchers over the last few
decades, and an interesting review on the di!erent types of brake noise has been presented
by Crolla and Lang [1]. Most modelling work in this area has been based on either lumped
parameter methods, (see for example references [2}7]), or "nite element methods (see for
example references [8}12]). Whatever the modelling method, the general approach adopted
by many is the use of linear analysis to determine when the system is stable for various
parametrical conditions. An unstable system suggests that the brake will be noisy and
a stable system otherwise. As the system is linear then stability analysis is performed by
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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"nding the real part of eigenvalues of the characteristic equation of the system. If these are
negative then the system is stable, but if they are positive then the system is unstable.
In a brake system the friction force is the main excitation mechanism. It is a distributed

force between the brake-pad and brake-disc and varies over the contact area in a complex
manner, being in#uenced, amongst other factors, by the dynamic behaviour of the pad and
disc. Recently, a "nite element model incorporating the distributed frictional force has been
developed [10]. Ibrahim has also published a comprehensive review on &&friction induced
vibration'' [13, 14].
In order to understand the fundamental mechanisms of brake noise, several di!erent

single-degree-of-freedom system models have been studied in terms of stability analysis, as
described in references [2, 15]. These models have been used to illustrate the di!erent causes
of instability, for example a negative friction}velocity gradient or particular geometry.
A negative friction}velocity gradient leads to &stick}slip' vibration and is recognized as one
of the prime causes of brake noise. This occurs because of the non-linearity of the frictional
force}velocity characteristic, and is characterized by uniform motion (stick motion that
accumulates energy in the system) followed by non-uniform motion (slip motion that
dissipates the accumulated energy). Stick}slip vibration has been an area of active research
for many years, and a notable publication in this area was on the study of dynamics of the
bowed-string of a violin by McIntyre and Woodhouse [16]. Since then, many articles
concerning stability analysis of stick}slip motion have been published (for example
references [17, 18]). Other types of behaviour can be produced by friction, and Popp and
Stelter [19] have shown that a simple single-degree-of-freedom system can exhibit rich
dynamics*from limit cycle, to quasi-periodic and chaotic behaviour. A relatively
new approach to modelling the friction force, which shows that instability is dependent on
initial conditions, has been introduced by McMillan [20] who used a hysteretic friction
model.
Once a brake system has become unstable the noise generated is often a single tone, with

the system vibrating at a resonant frequency. Thus, in this paper a two-degree-of-freedom
model of a disc-brake system is studied. The disc and pad are modelled by single modes, and
are connected through a sliding friction interface. The aim of the paper is to use this simple
model to investigate the e!ect of damping on the stick}slip vibration of a disc-brake system.
The model is not intended to be a complete dynamic model of a brake (it does not, for
example, allow a study of e!ects of the mode shapes of the component parts), but it can be
usefully used to illustrate some of the characteristics of stick}slip vibration. Although
stick}slip vibration alone is not the sole source of brake noise (judder, moan, groan, squeal,
etc. [1]), a study of the e!ects of damping in stick}slip vibration may help in the
understanding of disc-brake instabilities. An analysis of the simple model is carried out
using the characteristic equation to "nd the conditions for instability with particular
interest in the damping of the component parts. Following this, a non-linear analysis is
conducted to investigate the more subtle aspects of the system's behaviour. A negative
friction}velocity gradient is used to characterize the interface, and this leads to &&stick}slip''
vibration. The friction model used is the simplest possible model that still produces
self-excited vibrations (including stick}slip motion) as the aim of the paper is to investigate
the fundamental system dynamics rather than the response of the system to di!erent friction
interfaces. Although several two-degree-of-freedom models have been investigated in the
literature, for example, where masses are serially connected (both masses on the massless
moving belt) or where a single mass is considered with two co-ordinates (horizontal and
vertical) on a massless rotating disc [13, 21}25], to the authors' knowledge the model
proposed in this paper, which consists of two single-degree-of-freedom systems connected
through a sliding friction interface, is new.
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2. TWO-DEGREE-OF-FREEDOM MODEL AND LINEAR STABILITY ANALYSIS

Consider the model shown in Figure 1(a). It represents the pad and disc as
single-degree-of-freedom systems that are connected together through a sliding friction
interface. The system with subscript 1 denotes the pad, the system with subscript 2 denotes
the disc, and m, k and c denote mass, sti!ness and damping respectively. The motion of the
"rst mass (m

�
) may represent the tangential motion of the pad, and the second mass (m

�
)

may represent the in-plane motion of disc. The normal force acting on the interface is
N"PS where P is the pressure applied and S is the surface area of the interface. The
resulting frictional for F

�
is dependent upon the normal force and the dynamic coe$cient of

friction between the two sliding surfaces. The disc motion is the superposition of a constant
imposed velocity v

�
and velocity xR

�
, and the pad motion has velocity x�

�
.

Stick}slip motion is usually described as a limit cycle in phase space, and requires
non-linear analysis to determine the detailed behaviour of the system. However, since the
existence (and hence noise) or non-existence of a limit cycle depends on the stability of
equilibrium points, then linear analysis can be used to determine the stability of these
points. To conduct this investigation a linear friction model for the interface is used, and this
is shown as a function of the relative velocity v

�
between the pad and the disc in Figure 1(b),

where �
�
is the static coe$cient of friction and � (v

�
) is the dynamic coe$cient of friction. The

function � (v
�
), which has a negative gradient, has been speci"cally chosen for its simplicity,

although it is recognized that more complicated functions might give a more detailed
description of the interface properties.
Provided that the relative velocity is always positive, the frictional force is related to the

normal force by

F
�
"N(�

�
!�v

�
)"N(�

�
!�v

�
)#N�(xR

�
!xR

�
) (1)
Figure 1. Two-degree-of-freedom model of a disc brake system. (a) Two-degree-of-freedom model; (b) dynamic
friction coe$cient.
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and the equations of motion can thus be written as
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Note that the frictional forcing term is split into two parts; one is associated with a state
variable, namely damping, and the other can be considered as an independent external force
directly related to the dynamic friction coe$cient. It can be seen in equation (2) that the
term N� acts as negative damping, and is the only term connecting the pad and disc. For
stability analysis, where the forcing term on the right side of equation (2) is not considered,
the characteristic equation becomes
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Equation (3) is a fourth order polynomial of the form ��#a
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and therefore from the Routh criterion [26], the conditions for instability are
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To examine the stability of the system for various conditions some simulations are
presented. SinceN� is the most important parameter and has the same units as the damping
coe$cient, it is normalized with respect to the damping of the pad (c

�
). Figure 2 shows the

regions of stability/instability for various values of N� and other normalized system
parameters.
It can be seen from examining Figures 2(a) and 2(b) that whenm

�
+m

�
and when k

�
+k

�
smaller values of N�/c

�
will make the system unstable and hence noisy. This implies that

when the natural frequencies of the pad and the disc are the same, then for a given set of
operating conditions the system will be less stable. Figures 2(a2) and 2(b2) suggest that
increasing damping in either the disc or the pad will have a bene"cial e!ect. It should also be
noted from Figures 2(a) and 2(b) that the N� term should never be greater than c

�
or c

�
for

a stable condition. The general conclusion from this analysis is that for maximum stability
the natural frequencies of the disc and the pad should be well separated and be well damped.
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A stability criterion for the case when the ratio of two natural frequencies is large, say more
than 2, is

min(c
�
, c

�
)'N� when the natural frequencies are signi"cantly di!erent, (5)

where min(c
�
, c

�
) denotes the minimum value. Figures 2(c1) and 2(c2) show the plots of

N�/c
�
as a function of c

�
/c

�
for the situations when the natural frequencies are coincident

and when they are di!erent. These "gures further verify the above result, i.e., the brake is
more likely to be noisy when natural frequencies of the pad and disc are similar. They also
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show that the system generally becomes more stable as the damping increases. From
Figures 2(c1) and 2(c2) it can be seen that c

�
/c

�
is never smaller than twice N�/c

�
while

maintaining its stability. Thus, it is guaranteed that the system is always stable provided
that

min(c
�
, c

�
)'2N�. (6)

The criteria given in equations (5) and (6) imply that no matter how much damping is added
to the system on one side of the sliding interface, the system can become unstable unless an
appropriate level of damping is added to the other side.
In many disc-brake installations, damping is only added to the pad because it is relatively

easy to add damping to the pad rather than the disc. Sometimes this is e!ective, but
anecdotal evidence suggests that in some cases brake noise becomes worse after damping
treatment. The above results o!er an explanation why this might be so, and this is further
investigated in the next section.

3. NON-LINEAR ANALYSIS

Whilst the stability analysis conducted in the previous section is useful, it does not
provide detailed information on the non-linear dynamical behaviour of the system. For
example, it is possible for linear analysis to predict an unstable system, but the resulting
limit cycle may be very small and hence the noise generated would be inaudible. Non-linear
analysis can provide information on the size of a limit cycle and hence whether a particular
instability is a problem. The friction}velocity relationship used in this section is similar to
that used in section 2, but it allows a negative relative velocity. It is shown in Figure 3,
where it can be seen that there is a discontinuity at zero relative velocity. This causes highly
non-linear behaviour and produces stick}slip motion. When analyzing this non-linear
system, di$culties arise from the discontinuity in the friction force. This can be overcome by
either using the &&smoothing method'' or the &&switching method'' [27], and in this paper, the
switching method is used.
The motion of the system is governed by the static friction force in the stick motion and

by a velocity-dependent friction force in the slip motion. For the stick mode, the static
friction force is limited by the maximum state friction force, i.e., �F

�
�)�

�
N, and is balanced

with the reaction forces acting on the masses. Considering the relative motion between the
two masses the static friction force can be written as
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Figure 3. Friction force, F
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and the frictional force can be described by
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For numerical analysis, the friction force is switched appropriately according to the type of
motion, and a small region � of the relative velocity is de"ned, i.e., � v
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�
. The

equations of motion for the system are given by
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computation as
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numerically to determine the attractors of the system for various system parameters.
Because the two masses (pad and disc) are acted on by the same friction force, the resulting
motion of both pad and disc are the same if m

�
"m

�
, c

�
"c

�
and k

�
"k

�
. In this case, the

dynamics are similar to the single-degree-of-freedom system described in reference [19], i.e.,
stick}slip limit cycle motion is dominant provided that damping is su$ciently small. This
case is considered "rst to demonstrate the in#uence of parameters related to the friction
force, i.e., �, N and v

�
. For this simulation the system parameters are arbitrarily set to

m
�
"m

�
"k

�
"k

�
"1, c

�
"c

�
"0)01, and the static friction coe$cient is set to �

�
"0)6.

This stick}slip motions for various values of friction parameters are shown in Figure 4. In
this "gure, only pad motion is shown since the disc motion is almost identical.
From Figure 4(a), it can be seen that a steady limit cycle occurs if � is very small. This is

probably because the dynamic friction coe$cient is similar to the static friction coe$cient in
this case. As � is increased, however, a stick}slip limit cycle occurs and the size of limit cycle
increases. This shows that brake noise will probably become worse when the negative
gradient of the dynamic friction coe$cient increases. Similar results are obtained for the
case of normal force &&N'' and the velocity &&v

�
'' as shown in Figures 4(b) and 4(c),

respectively, i.e., the size of limit cycle increases as increasing the values of N and v
�
.

The above results further verify the importance of the term N� described in the previous
section. Also, it is shown that the input velocity v

�
a!ects the slope of dynamic friction

coe$cient, thus a!ecting the size of the limit cycle. The parameters �, N and v
�
may be

di$cult to change when designing a brake system. It may be easier to change the system
parameters (mass, damping and sti!ness), and thus the e!ects of these parameters on the
dynamic behaviour of the system is investigated, with particular emphasis on the damping
parameter.



Figure 4. Limit cycle motions for various values of friction parameters. (a) Motions of the pad for various values
of &&�'' (where N"10 and v

�
"1). (b) Motions of the pad for various values of &&N'' (where �"0)012, and v

�
"1).

(c) Motions of the pad for various values of &&v
�
'' (where N"10 and �"0)012).
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Various combinations of system parameters are considered while the friction parameters
are set to N"10, �"0)012 and v

�
"1 for all the cases presented. The "rst criterion in

section 2, &&min(c
�
, c

�
)'N�'' is veri"ed for a large di!erence in two natural frequencies, by

observing the motions for two cases obtained with system parameters,m
�
"m

�
"1, k

�
"1,

k
�
"2 and c

�
"c

�
"0)11 andm

�
"m

�
"1, k

�
"1, k

�
"2 and c

�
"c

�
"0)13 respectively.

Note that the value of N� is 0)12, in this case. Also, note that both damping parameters
must be larger than N� to meet the criterion. Since the qualitative motions of the pad and
the disc are similar, only the motions of the pad are presented in the results shown in
Figure 5.
As shown in Figure 5(a), when the damping parameters are smaller than N�, the motion

is a steady limit cycle showing that there is an unstable equilibrium point. If the values are
greater thanN�, the motion gradually dies away to a stable equilibrium point, and the time
history for this case is shown in Figure 5(b). Consider now the case when the natural
frequencies of the pad and disc are the same, and the parameters are m

�
"m

�
"k

�
"1 and

c
�
"c

�
"0)13, i.e., the same damping parameters as with the case of Figure 5(b). The results

are shown in Figure 5(c) where it can be seen that the motion now becomes a stick}slip limit
cycle. Whilst conducting the simulations, it was found that the motion of the system
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appeared to become chaotic in certain conditions, an example of which is shown in
Figure 5(d). Note that this "gure is after the transient motion dies out. Further analysis
would be needed to con"rm that this is actually chaotic. However, the analysis of such
behaviour is not the aim of the paper, and so is not considered further.
Because damping plays an important role, its e!ects on the limit cycles are further

examined. For this study, mass and sti!ness parameters are "xed so that the pad and the
disc have the same natural frequencies, i.e., m

�
"m

�
"k

�
"k

�
"1, and the friction

parameters are as before. The damping parameters (c
�
and c

�
) are then varied to examine

the limit cycle behaviour of both pad and disc, the results of which can be seen in Figures 6
and 7.
It is found that the size of the limit cycles decrease as the damping of both pad and disc

increase simultaneously, and "nally end up as "xed points when the damping parameters
are su$ciently large as shown in Figure 6. It should be noted that in these simulations the
value of 2N� is 0)24 and c

�
"c

�
"0)22 for the limit cycles in Figures 6(a1) and 6(b1) and

c
�
"c

�
"0)26 for the phase plane plots in Figures 6(b1) and 6(b2). Thus the second

criterion in section 2, i.e., &&min(c
�
, c

�
)'2N�'' for two natural frequencies the same, is

validated.
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"111. (a1) Stick}slip motion of
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However, if the damping is increased in the system only on one side of the interface, for
example in the pad, the size of limit cycle corresponding to the pad decreases, whereas the
limit cycle of the disc increases. This is demonstrated in Figure 7, where the damping of the
disc is "xed, c

�
"0)01, and the damping of pad is gradually increased. It is also found that

the system does not go to a "xed point no matter how much damping is added.

4. CONCLUSIONS

A two-degree-of-freedommodel has been used to investigate the basic mechanisms of an
instability that is one of the causes of disc brake noise. The model has also been used to
demonstrate the conditions necessary for preventing the instability. The analysis suggests
that when the natural frequencies of a pad and disc are in close proximity then a brake is
more likely to be noisy. It has also been found that the amount and distribution of damping
in the system is a key factor. The damping of the pad and the disc are of equal importance in
the prevention of an instability and hence noise. Non-linear analysis has been conducted to
investigate the detailed dynamical behaviour of the model for various combinations of both



Figure 7. Motions when only one damping is increased, where &&m
�
"m

�
"k

�
"k

�
"111. (a1) Limit cycle

motion of the pad (c
�
"0)16, c

�
"0)01). (a2) Limit cycle motion of the disc (c

�
"0)16, c

�
"0)01). (b1) Limit cycle

motion of the pad (c
�
"0)56, c

�
"0)01). (b2) Limit cycle motion of the disc (c

�
"0)56, c

�
"0)01).
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friction parameters and system parameters. The results further con"rm the importance of
damping on the squeal noise, and have shown the increasing damping of either the disc or
the pad alone can potentially have detrimental e!ects on the system stability.

ACKNOWLEDGMENTS

This work was supported partly by Lucas Variety plc (Now TRW) and the EPSRC, and
partly by the BK21 Projects, Division for Research and Education in Mechanical
Engineering of the Korean Ministry of education.

REFERENCES

1. D. A. CROLLA and A. M. LANG 1990 Proceedings of the 17th ¸eeds}¸yon Symposium on
¹ribology. ¹he ;niversity of ¸eeds, ;.K., 165}174. Brake noise and vibration*the state of the
art.

2. P. C. BROOKS, D. A. CROLLA, A. M. LANG and D. R. SCHAFER 1993 Proceedings of the Institute of
Mechanical EngineersC444/004/93, 135}143. Eigenvalue sensitivity analysis applied to disc brake
squeal.



848 K. SHIN E¹ A¸.
3. S. W. E. EARLES and P. W. CHAMBERS 1987 International Journal of <ehicle Design 8, 538}552.
Disc brake squeal noise generation: predicting its dependency on system parameters including
damping.

4. S. W. E. EARLES and P. W. CHAMBERS 1988 Proceedings of the Institute of Mechanical Engineers
C454/88, 39}46. Disc brake squeal*some factors which in#uence its occurrence.

5. R. P. JARVIS and B. MILLS 1963}64 Proceedings of the Institute of Mechanical Engineers 178,
847}866. Vibrations induced by dry friction.

6. A. M. LANG and H. SMALES 1983 ¹he Institute of Mechanical Engineers International Conference
on Braking of Road<ehicles C37/83, 223}232. An approach to the solution of disc brake vibration
problems.

7. M. R. NORTH 1976 the Institute of Mechanical Engineers Conference on Braking of Road <ehicles
C38/76, 169}176. Disc brake squeal.

8. H. GHESQUIERE 1992 Proceedings of the Institute of Mechanical Engineers C389/257, 175}181.
Brake squeal noise analysis and prediction.

9. A. M. LANG, D. R. SCHAFER, T. P. NEWCOMB and P. C. BROOKS 1993 Proceedings of the Institute
of Mechanical Engineers C444/016/93, 161}171. Brake squeal*the in#uence of rotor geometry.

10. Y. S. LEE, P. C. BROOKS, D. C. BARTON and D. A. CROLLA 1999 Proceedings of the Institute of
Mechanical Engineers C521/009/98, 191}201. A study of disc brake squeal propensity using
a parametric "nite element model.

11. G. D. LIIES 1989 SAE Paper 891150, 1138}1146. Analysis of disc brake squeal using "nite element
methods.

12. H.MURAKAMI, N. TSUNADA and T. KITAMURA 1984 SAEPaper 841233, 1}13. A study concerned
with a mechanism of disc-brake squeal.

13. R. A. IBRAHIM 1994 Applied Mechanics Review 47, 209}226. Friction-induced vibration, chatter,
squeal, and chaos. Part 1: mechanics of contact and friction.

14. R. A. IBRAHIM 1994 Applied Mechanics Review 47, 227}253. Friction-induced vibration, chatter,
squeal, and chaos. Part 2: dynamics and modelling.

15. H. MATSUI, H. MURAKAMI, H. NAKANISHI and Y. TSUDA 1992 SAE Paper 920553, 15}24.
Analysis of disc brake squeal.

16. M. E. MCINTYRE and J. WOODHOUSE 1979 Acustica 43, 94}108. Fundamentals of bowed-string
dynamics.

17. G. CAPONE, V. D'AGOSTINO, S. D. VALLE and D. GUIDA 1992=ear 161, 121}126. In#uence of the
vibration between static and kinetic friction on stick}slip instability.

18. A. RUINA 1983 Journal of Geophysical Research 88, 10 359}10 370. Slip instability and state
variable friction laws.

19. K. POPP and P. STELTER 1990 Philosophical ¹ransactions of the Royal Society of ¸ondon A 332,
89}105. Stick}slip vibrations and chaos.

20. A. J. MCMILLAN 1997 Journal of Sound and <ibration 205, 323}335. A non-linear friction model
for self-excited vibrations.

21. M. T. BENGISU and A. AKAY 1999 Journal of the Acoustical Society of America 105, 194}205.
Stick}slip oscillations: dynamics of friction and surface roughness.

22. J. AWREJCEWICZ and J. DELFS 1990 European Journal of Mechanical A/Solids 9, 269}282.
Dynamics of a self-excited stick}slip oscillator with two degrees of freedom. Part I. Investigation
of equilibria.

23. J. AWREJCEWICZ and J. DELFS 1990 European Journal of Mechanical A/Solids 9, 397}418.
Dynamics of a self-excited stick}slip oscillator with two degrees of freedom. Part II. Slip}stick,
slip}slip, stick}slip transitions, periodic and chaotic orbits.

24. U. GALVANETTO, S. R. BISHOP and L. BRISEGHELLA 1995 International Journal of Bifurcation and
Chaos 5, 637}651. Mechanical stick}slip vibrations.

25. H. OUYANG, J. E. MOTTERSHEAD, M. P. CARTMELL and D. J. BROOKFIELD 1999 International
Journal of Mechanical Sciences 41, 325}336. Friction-induced vibration of an elastic slider on
a vibration disc.

26. K. OGATA 1970 Modern Control Engineering, 252}258. Engelwood Cli!s, NJ: Prentice-Hall.
27. R. I. LEINE, D. H. VAN CAMPEN, A. DE KRAKER and L. VAN DEN STEEN 1998 Nonlinear

Dynamics 16, 41}54. Stick}slip vibrations induced by alternative friction models.


	1. INTRODUCTION
	2. TWO-DEGREE-OF-FREEDOM MODEL AND LINEAR STABILITY ANALYSIS
	Figure 1
	Figure 2

	3. NON-LINEAR ANALYSIS
	Figure 3
	Figure 4
	Figure 5
	Figure 6

	4. CONCLUSIONS
	Figure 7

	ACKNOWLEDGMENTS
	REFERENCES

